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BACT Program Overview

« Benchmark Aeroelastic Models Program
— study physics of aeroelastic phenomena
» classical transonic flutter “bucket”
» shock induced instabilities
» dynamic vortex-structure interaction
— data to validate steady and unsteady aero codes
— active control of aeroelastic systems

« Benchmark Active Control Technology (BACT)

— high quality unsteady aero data near flutter

— active flutter suppression
» innovative control concepts - spoilers and multiple effectors
» innovative design methods - H¥, p-synthesis, neural nets

— validate on-line controller performance evaluation tool
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BACT System Overview

 Pitch and Plunge Apparatus (PAPA) ¢ Instrumentation

— 2-DOF : pitch and plunge — 4 accelerometers in corners of wing
— 5-6 deg max. rotation — pitch angle sensors
— 1.5inch max. deflection — 70 pressure transducers
e Wind-Tunnel Model » 58 @ 0.6b (incl. control surfaces)
— rigid NACA 0012 airfoil » 17 @ 0.4b
— AR=2 (c=16in., b=32in.) — add’l transducers on splitter plate
e« Control Surfaces — accels and strain gauges on PAPA

— span = 0.3b, centered at 0.6b
— upper and lower spoilers

» chord =0.15c

» 45 deg max. deflection
— trailing edge flap surface

» chord =0.25c

» 15 deg max. deflection
— hydraulic actuators
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Flutter Suppression Control Laws

 Design Objectives
— Stability Over Entire Operating Range

— Acceptable Control Activity
— Simple Implementation

« Traditionally Designed SISO Controllers

— Demonstrate Flutter Suppression Using Spoilers

— Develop Performance Specifications z TC
— Coupled SISO Controllers — Gi(S) —>
Z, us
 Robust MIMO Controllers | Gy(S) —>

— Demonstrate Multivariable
Flutter Suppression TE

Z
— Evaluate Enhanced —m| G;y(S) Gyi(s) -
Robustness Properties
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MIMO Controller Design Methods

e Robustness

— Maintain Stability and Performance Subject to Model Variation
— Variations Include

» Operating Condition "~ Dynamical System |
» Model Error/Uncertainty I |
! A(S) '
 H¥ Control : :
— Robust Stability : :
— Nominal Performance G(s)

L e e e e e - - - -

* U-Synthesis
— Robust Stability

— Robust Performance
— Structured Uncertainty Controller
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Modeling for Flutter Suppression

« Model elements

— structural dynamics

— steady and unsteady aerodynamics (including control effects)
— turbulence effects

— actuators, sensors, controller effects

—=| Turbulence | Structure Filters
& —=-|Sensors (- &
—|Actuators|—s| Aero Delays
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Plant Model

 Averaged over unstable conditions (g=155-195 psf)
 Frequency weighted internally balanced reduction
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Uncertainty Model

« Based on reduced averaged model and ensemble
e Qutput multiplicative form
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Weighting Functions
- Performance:  max(0,h) <0.01g

e Control : max(éTE,6US)<1.Odeg (3.0deg)
* Output: W, =1.0e- 4
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SISO Control Law

e Trailing Edge Flap Controller

solid - TE/TEI dash - TE/LEI
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Design Process

Apply design algorithms
— H¥ and p-synthesis
— Used p-Analysis and Synthesis Toolbox (for MATLAB)

Reduce controller order

— required order - 24 states (or less)

— frequency weighted internally balanced reduction

Augment washout filters

— low frequency attenuation was insufficient

— significant biases and drift in accelerometer amps

Discretize control law
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Control Laws
 H¥ Design #1

Input: TEI Accel
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Control Laws

e U-Synthesis Design #1

Input: TEI Accell
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Robustness Analysis

e “Unit” Uncertainty

 “Average” Uncertainty
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Transient Response - Example

Trailing Edge Controller at Mach = .81, q = 153 psf (Open Loop Unstable)

Trailing Edge Command (deg)
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Experimental Results

Mach =0.77, q =175 psf Mach =0.77, q =175 psf
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Concluding Remarks

e Spoilers for Flutter Suppression
— Representative of “Innovative Control Effectors”
— Additional Design Freedom
— Enhanced Redundancy

 Robust Multivariable Flutter Suppression

— Enhanced Performance (over SISO designs)
— Enhanced Robustness

e Design Issues
— Difficulty Accomodating Washout Filters
— Difficulty Accomodating Model Order Limitations
— Sensitivity to Performance Specifications
— Numerical Algorithms and Convergence Issues
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